

Exhaust Guide

The Ultra-Flow Continuous Gravity Ventilator is the most aerodynamically efficient in the RVI range of exhaust ventilators.

The Ultra-Flow provides an energy and cost effective means of air exhaust for severe heat and fume problems. Ideally suited to application in aluminium smelters, steel mills, boiler houses, glass plants and general industrial manufacturing facilities.

Typical Cross Section

Ultra-Flow ridge ventilators

Coefficient of Discharge 0.65
Throat Size: 750 mm to 3000 mm

Design Features

- Coefficient of Discharge: As determined by independent tests is a minimum of 0.65
- Unobtrusive: Designed to meet architectural requirements of low silhouette and modern design and provide minimum resistance to wind forces.
- Guiding vanes: Facilitate redirection of exhausted air to provide for a more uniform velocity distribution at top of ventilator opening, allowing for a greater capacity discharge for a given size
- Diaphragms: Wind jump diaphragms ensure efficient exhaust even when wind direction parallels the ventilator opening.
- Welded: frames make for reduced erection costs and lower supporting steel costs, in addition to providing greater overall strength.
- Materials: Can be supplied in a wide range of cladding materials including Versacor coated sheeting.
- Acoustics: Can be acoustically treated to suit specific project requirements.

	requirements.										
Dimensions and Mass:											
Dimensions (mm)				imate Mass ar Metre (kg)	Approximate Mass Pair of ends (kg)						
Α	В	С	Versacor	Zincalume	Versacor	Zincalume					
750	1100	1900	70	64	116	110					
1000	1330	2350	100	92	168	159					
1500	1800	3450	124	112	285	269					
2000	2270	4550	154	134	450	406					
2500	2820	5670	217	200	637	600					
3000	3300	6850	290	270	1033	975					
OTE: Mass per	metre run related	to ventilators with	standard 3,000 mm frame s	pacing.							

Temp. Diff x Eff. Ht. (△T degC x metres)	CLEAR OPENING (mm)									
(Z1 degC x medes)										
	750	1000	1500	2000	2500	3000				
30	0.398	0.530	0.795	1.060	1.325	1.590				
40	0.459	0.612	0.918	1.224	1.530	1.836				
50	0.513	0.684	1.027	1.369	1.711	2.053				
60	0.562	0.750	1.125	1.499	1.874	2.249				
70	0.607	0.810	1.215	1.620	2.024	2.429				
80	0.649	0.866	1.299	1.731	2.164	2.597				
90	0.689	0.918	1.377	1.836	2.296	2.755				
100	0.726	0.968	1.452	1.936	2.420	2.904				
110	0.761	1.015	1.523	2.030	2.538	3.045				
120	0.795	1.060	1.590	2.121	2.651	3.181				
130	0.828	1.104	1.655	2.207	2.759	3.311				
140	0.859	1.145	1.718	2.290	2.863	3.436				
150	0.889	1.185	1.778	2.371	2.964	3.556				
175	0.960	1.280	1.921	2.561	3.201	3.841				
200	1.027	1.369	2.053	2.738	3.422	4.106				
250	1.148	1.530	2.296	3.061	3.826	4.591				
300	1.257	1.676	2.515	3.353	4.191	5.029				
400	1.452	1.936	2.904	3.872	4.839	5.807				
500	1.623	2.164	3.246	4.329	5.411	6.493				
600	1.778	2.371	3.556	4.742	5.927	7.112				

a) The above exhaust capacity table is based upon zero wind velocity. Wind velocity will increase the vent's exhaust capacity b) This table is based upon a ratio of free area of inlet openings to exhaust openings of 1.5:1.0